

Welcome to DV-SDK and DV-Runtime documentation!

DV-SDK

dv-sdk is the library we provide to extend the provided functionalities of the
DV[#1] software or integrate other algorithms into it. It is
used to create new modules that would implement new processing features or integrate existing algorithms.

In this documentation we explain how to:

	Install the dv-sdk library

	Understand and Create DV Modules

DV-Runtime

dv-runtime is our provided Runtime System[#2]. It is the environment that
will host the modules and take care of the threads, the memory allocation and data exchange between the modules. It is
made to be used via DV[#3], but it can also be used on its own.

In this documentation we explain how to:

	Install dv-runtime

	Use dv-runtime

Footnotes

[#1]
https://docs.inivation.com/master/software/dv/index.html

[#2]
https://en.wikipedia.org/wiki/Runtime_system

[#3]
https://docs.inivation.com/master/software/dv/index.html

Installation

In order to develop modules for DV[#1], the
dv-sdk library is required. For this purpose, a working C++ 20 toolchain must be installed on the system. This library
is currently only available on Mac and Linux systems. This means using one
of the following:

	Apple clang version 14 or newer (on Mac)

	gcc version 10.0 or newer

	clang version 13 or newer

 MacOS

Prerequisites

The recommended toolchain is the standard toolchain provided by Apple with XCode. To install this, run:

xcode-select --install

We also require cmake to build applications. The easiest way to install cmake is via Homebrew[#2].
Run:

brew install cmake

Library Installation

The dv-sdk library is included in the installation of dv-runtime.

If you have a mac with Apple Silicon processor, the development runtime will run natively on it.

 Linux

Make sure you have a C++ build environment, including cmake, installed on your system.

Ubuntu Linux

We provide a PPA repository[#3] for Focal (20.04 LTS) and
Jammy (22.04 LTS) on the x86_64, arm64 and armhf architectures.

sudo add-apt-repository ppa:inivation-ppa/inivation
sudo apt-get update
sudo apt-get install dv-runtime-dev

Fedora Linux

We provide a COPR repository[#4] for Fedora 34, 35, 36 and
rawhide on the x86_64, arm64 and armhf architectures.

sudo dnf copr enable inivation/inivation
sudo dnf install dv-runtime-devel

Arch Linux

The required files to use dv-sdk are provided via the dv-runtime installation.

Gentoo Linux

The required files to use dv-sdk are provided via the
dv-runtime installation.

Footnotes

[#1]
https://docs.inivation.com/master/software/getting-started/installation.html

[#2]
https://brew.sh

[#3]
https://launchpad.net/~inivation-ppa/+archive/ubuntu/inivation

[#4]
https://copr.fedorainfracloud.org/coprs/inivation/inivation/

DV Modules

A DV module is a piece of code that applies some sort of operation to data, usually having multiple data inputs and
outputs.

[image: Module appearance in DV]

Some modules only have outputs, such as the camera or file playback modules, as they only produce new data for the
framework to consume. Some modules only have inputs, such as the network or file recorder modules, as they send data
outside the framework. When you want to build an application for DV, you most likely want to build a module that takes
on some camera data, and outputs some measurements or visualization outputs.

Every module is essentially a CMake project, that most modern IDEs understand.

In this documentation we show you how to:

	Create a DV Module

	Create a Custom Datatype to use as input/output for modules.

Module Files Location

Modules are shared libraries. They are files with the extension .so (Linux), .dylib (macOS), or .dll (Windows).
Modules library files are in:

	/usr/share/dv/modules (Linux)

	/usr/local/share/dv/modules or /opt/homebrew/share/dv/modules (macOS)

	C:\Program Files\DV\runtime\dv_modules (Windows)

For a library to be discoverable by DV, it has to be in that directory.

Footnotes

Create your Own DV Module

In this documentation we show you how to:

	Create your First Module.

	Understand and use the general Module API.

	Understand and use the I/O API.

	Understand and use the Configuration API.

	Understand and use the Logging API.

Footnotes

Write a First Module

Prerequisites

	A working installation of DV on your computer

	macOS Make sure to also install the dv-runtime package via brew

	Windows Development on Windows is not yet supported

	Knowledge of C++ programming

	A working C++ toolchain for your system, including cmake

	Your C++ editor or IDE of choice

Start a new project

A demo module that counts events can be found on Gitlab. (https://gitlab.com/inivation/dv/dv-example-cpp).

Clone the start module repository with git

git clone https://gitlab.com/inivation/dv/dv-example-cpp.git

Rename project

After downloading, let’s rename the project first. First, rename the project folder

mv dv-example-cpp my-first-module

after that, rename the project name in the CMakeLists.txt file by changing the line PROJECT(dv-example-cpp C CXX)
with your favourite text editor. For example, you could change it to PROJECT(my-first-module C CXX).

Command Line Build

To build the demo module from terminal, use the following commands:

cd my-first-module
cmake .
make -j2 -s
sudo make install

If everything goes well, you should end up with a file my-first-module.(so|dylib) in the modules directory.

IDE

QT Creator

Click File -> Open File or Project… and select the projects CMakeLists.txt. Configure the project by selecting the
builds you want to create and specify their location or use the default.

CLion

Click File -> Open and select the project root directory. CLion should automatically detect the project as a CMake
project and try to run cmake in the project folder.

Eclipse

Eclipse does not support cmake natively yet. It does however support Makefile projects. Since cmake essentially
generates a Makefile, we can run cmake in the command line and open the resulting project in Eclipse.

Run cmake in the project directory

cmake .

Now, you can import it into Eclipse with File -> Import… -> Existing Code as Makefile Project.

Other

The project is a simple CMake project. If your IDE supports CMake, it should be capable of opening the project out of
the box.

Run configuration

Set your IDEs run configuration to launch dv-runtime. dv-runtime is (most likely) in /usr/bin (Linux) or
/usr/local/bin (macOS).

[image: QT Creator run configuration]

Run configuration for QT Creator (Projects -> Build & Run -> Run).

[image: Clion run configuration] Run configuration for CLion.

To have DV load modules automatically when running the project within an IDE, add
DV_MODULES_PATH=$PATH_TO_MODULE_PROJECT to Environment variables. ($PATH_TO_MODULE_PROJECT is a path to the
project root directory of your new module.)

Set up DV

To iteratively test a module, you will have to set up DV the following way

	Launch DV

	Disable Connect to -> Manage local runtime instances. This tells DV to not start its own runtime, and just wait for
someone else to start a runtime in its behalf.

	Select Shutdown if DV asks to shut down the current instance.

	DV is now waiting for a runtime to be started externally, and will connect as soon as one is started
[image: DV waiting for connection]

	Start your runtime by clicking the play button in your IDE. Make sure to have set up your IDE run configuration as
described above.

	As soon as DV connects to the runtime, select the Structure tab, click on Add module and select Modify module
search path.

	Click on Add path and add the path where you compiled your modules project directory. Click on Done.
[image: Adding a module search path]

	Click on Add module again. If your module compiled succesfully, it should show up in the list of available modules
to add. Click on your module name. [image: Adding user module]

	Connect the input and outputs of your module. Drag the connections from outputs into your modules inputs, and drag
connections from your modules outputs to other inputs.
[image: Adding user module]

	Click the Play Button on your module to start it.

	If your module is working, you should see your expected outputs.

Adapt the module

Getting event data from an input

Event data gets passed between modules in packets. The size of event packets is decided by the interval the preceeding
module emits the packets. The run function gets executed whenever there is new data available, or, when nothing
happens, periodically.

Every module has inputs. Inputs are defined in the initInputs function. The demo module we just compiled before, has
an events input called “events”. To access the most recently arrived data packet on this input and iterate over the
events, override the run function as such:

void run() override {
 auto inData = inputs.getEventInput("events").events();

 for (const auto &event : inData) {
 // do something with the events
 }
}

Getting meta data from an input

Input do not only provide raw data, they also provide (static) meta information, such as width and height dimensions.
For example, to get the width and height of the event input, write:

int width = inputs.getEventInput("events").sizeX();
int height = inputs.getEventInput("events").sizeY();

There is a simple counting algorithm already implemented in the example project

Adding outputs

Modules can not only take data, they can also output data to subsequent modules. Module outputs are defined in the
static initOutputs function. Since the example module we worked on so far, does not have an initOutputs function, we
add it like so

static void initOutputs(dv::OutputDefinitionList &out) {
 out.addEventOutput("events");
}

The out.addEventOutput("events"); line adds an output of the event type, with the name “events” to the module.
Contrary to the input case, we’re not entierly done yet. Any output you define in your module has to be assigned its
required meta data. For example, an event output needs to have an assigned width and height to it. It is common that you
would want to setup the output with the same dimensions as an input to the module. Since the information to what is
actually connected to an input is only available at run time, we do not perform the setup call in the initOutputs
function, but rather in the classes constructor.

Since our class does not have a constuctor yet, we create one like so:

ExampleModule() {
 outputs.getEventOutput("events").setup(inputs.getEventInput("events"));
}

The line in the constructor body sets up the event output named “events” to the same parameters as the event input named
“events”. To set the output up with different parameters, you can call a different setup function like

outputs.getEventOutput("events").setup(346, 260, "Data from example module");

Adding config options

Config options are configurable parameters that are displayed in the gui for easy access. Config options are defined in
the initConfigOptions function. In our example app, the initConfigOptions function already exists. The value of a
config option can be accessed in the run function by calling config.getInt (or similar for other datatypes).

static void initConfigOptions(dv::RuntimeConfig &config) {
	config.add(
		"printInterval", dv::ConfigOption::intOption(
							 "Interval in number of events between consecutive printing of the event number.", 10000));
}

A note on performance: Looking up the value of a config option requires an access to a hashmap with a string key.
This is an efficient operation, but in case of event-by-event processing, it still adds considerable overhead. To solve
this issue, one can override a function void configUpdate() which gets called whenever a config value is changed by
the user. Use this function to look up config values and copy them into local variables to improve performance in the
run function. Example:

void configUpdate() override {
 printInterval = config.getInt("printInterval");
}

Example: Create a refractorary period filter

The complete code for this example can be accessed at
gitlab.com/inivation/dv/dv-tutorial-code[#1]

Time to make our example module do something useful. A refractory period filter limits the maximum firing rate of a
pixel. Whenever an event at a pixel passes through the filter, all subsequent events are discarded until the refractory
period is over.

Add private data members

Let’s change the private data members of our class to store the data we need to function

private:
 // user selectable refractory period in microseconds
 long refractoryPeriod;
 // a matrix storing the last firing times for every pixel
 dv::TimeMat lastFiringTimes;

The first integer refractoryPeriod stores a configuration value, where the user can set the refractory period to a
user defined value. The second member lastFiringTimes is of the dv::TimeMat type. dv::TimeMat is a simple matrix
type that stores a 2D array of 64bit integers. We usually use the OpenCV Mat types for handling 2D data. OpenCV does
not provide a 64bit integer type, which is why we provide the dv::TimeMat type. Make sure to include

#include <dv-sdk/processing.hpp>

Set inputs and outputs

Our refractory period filter needs exactly one event input and one event output. We define them as follows:

static void initInputs(dv::InputDefinitionList &in) {
 in.addEventInput("events");
}

static void initOutputs(dv::OutputDefinitionList &out) {
 out.addEventOutput("events");
}

Set description

Let’s set the description of the refractory period filter

static const char *initDescription() {
 return "This module filters events by applying a refractory period to the event timestamps.";
}

Set configuration options

Our refractory period filter should have exactly one configuration option, the option to set the refractory period. The
type of the option is long and we set a default of 10ms with sensible range from 1ms to 1000ms.

static void initConfigOptions(dv::RuntimeConfig &config) {
	config.add(
		"refractoryPeriod", dv::ConfigOption::longOption("Refractory period to apply to events (in ms)", 10, 1, 1000));

	config.setPriorityOptions({"refractoryPeriod"});
}

The setPriorityOptions call only makes sure that the config option is exposed to the right side bar of the gui by
default. If you do not specify this, you access the option in the gui by clicking on the black plus icon.

Set constructor

The job of the constructor is all about initializing private data members as well as outputs. We initialize the
lastFiringTimes array as well as the output to the same dimensions as the events input.

ExampleModule() : refractoryPeriod(0), lastFiringTimes(inputs.getEventInput("events").size()) {
	outputs.getEventOutput("events").setup(inputs.getEventInput("events"));
}

Define the config update

The configUpdate function gets called at the start (before run) as well as whenever the config is changed. In our
case, only when the user changes the refractoryPeriod configuration. In the function, we look up the new value and
store it in the private data member. We could look up the value in the run function as well, but since config changes
are quite rare, it makes sense to only do it when there is a change.

void configUpdate() override {
 refractoryPeriod = config.getLong("refractoryPeriod") * 1000;
}

We multiply the value by 1000, to convert the value from miliseconds to microseconds.

Implement run function

The run function is where the actual processing happens. Our refractory period filter is pretty simple:

void run() override {
 auto input = inputs.getEventInput("events");
 auto output = outputs.getEventOutput("events");

 for (const auto &event : input.events()) {
 if ((event.timestamp() - lastFiringTimes.at(event.y(), event.x())) > refractoryPeriod) {
 lastFiringTimes.at(event.y(), event.x()) = event.timestamp();
 output << event;
 }
 }
 output << dv::commit;
}

If the time between the current event and the last firing time at that position is larger than the refractory period,
update the last firing time for that pixel and append the event to the output.

After we appended all events the output, calling output << dv::commit; sends the events out in a packet to the next
module.

Congratulations, you built your first useful module!

The complete code for this example can be accessed at
gitlab.com/inivation/dv/dv-tutorial-code[#2]

Resources

	Minimal example module: gitlab.com/inivation/dv/dv-example-cpp[#3]

	Module with header / code separation:
gitlab.com/inivation/dv/dv-tutorial-code/-/tree/master/color-paint-example[#4]

Footnotes

[#1]
https://gitlab.com/inivation/dv/dv-tutorial-code

[#2]
https://gitlab.com/inivation/dv/dv-tutorial-code

[#3]
https://gitlab.com/inivation/dv/dv-example-cpp

[#4]
https://gitlab.com/inivation/dv/dv-tutorial-code/-/tree/master/color-paint-example

Module API

A DV module is processing unit that takes some streams as inputs, does operations on them, and outputs streams as
outputs. Typically, a module takes on polarity event data, does computer vision algorithms on the data and outputs the
results. Input and outputs can have arbitrary types.

Module Basics

Every DV module inherits from the dv::ModuleBase class. In order to register a module class (that inherits from
dv::ModuleBase) as a DV module, the following macro has to be called at the end of the file where the class is
defined:

registerModuleClass(RefractoryPeriodFilter)

Fields

Inheriting from the this class gives access to the following fields

	Field

	Type

	Purpose

	config

	dv::RuntimeConfig

	Access config values from config options.

	log

	dv::Logger

	A configured logging instance to log values to DV

	inputs

	dv::RuntimeInputs

	Access to the inputs of the module to get data

	outputs

	dv::RuntimeOutputs

	Access to the outputs of the module to send data

Static Methods

Every module has to provide some static methods to work properly with DV. The static methods must have the exact
footprint as described in the list below. You have to provide these methods.

static const char *initDescription()

Return a description of what the module does This function is required

static void initInputs(dv::InputDefinitionList &in)

Define the inputs to the module

static void initOutputs(dv::OutputDefinitionList &out)

Define the outputs to the module

static void initConfigOptions(dv::RuntimeConfig &config)

Define configuration options for the module

Overridable Methods

dv::BaseModule exhibits two overridable functions to implement the functionality of the module.

void run()

Gets called periodically or as new data arrives. Should do the processing. This function is required

void configUpdate()

Gets called whenever the user changes the configuration. Used to read new configuration values and store them in
instance data members.

Footnotes

I/O API

Inputs

Every module can have zero or more inputs, as well as outputs. Inputs take data from other modules, outputs push data to
subsequent modules. Inputs and outputs preferrably have one of the predefined types, but can in general take on any
custom flatbuffer defined type.

The predefined types are

	Event

	Frame

	IMU

	Trigger

	BoundingBox

Input definition

Inputs can only be defined in the initInputs static function. The number of inputs as well as their types and
names must be fixed for every module, and can not be changed at runtime. However, to take on a variable number of input
signals, inputs can me marked as optional. In that case, the code has to check at runtime if an input is connected.

Inputs get defined in the static void initInputs(dv::InputDefinitionList &in) function. The argument is a modifiabable
container that offers functions to add inputs of different types:

in.addEventInput(const std::string &name, bool optional = false)
in.addFrameInput(const std::string &name, bool optional = false)
in.addIMUInput(const std::string &name, bool optional = false)
in.addTriggerInput(const std::string &name, bool optional = false)
in.addBoundingBoxInput(const std::string &name, bool optional = false)

To add an input for a custom flatbuffer type, use the following function. The type identifier is the four character type
identifier string.

in.addInput(const std::string &name, const std::string &typeIdentifier, bool optional = false)

Inputs at runtime

Inputs can be accessed in constructor, run and configUpdate functions. Inheriting from dv::ModuleBase provides an
object called inputs.

To retrieve an input with a known name and type, call the respective function

const auto input = inputs.getEventInput(const std::string &name);
const auto input = inputs.getFrameInput(const std::string &name);
const auto input = inputs.getIMUInput(const std::string &name);
const auto input = inputs.getTriggerInput(const std::string &name);
const auto input = inputs.getBoundingBoxInput(const std::string &name);

To retrieve an input for a custom flatbuffer type <T>, call

const auto input = inputs.getInput<T>(const std::string &name);

Input APIs

Not all input types share the same information. Therefore, the APIs for the different input types differ slightly.

Events

Data

const auto inEvents = input.events();

Returns an (random access) iterable data structure of the latest events to arrive at the input. One can convenently loop
over the arrays with for (const auto &event : input.events()) {}.

The returned value can also be implicitly converted to a const dv::EventStore. It can directly be passed to any
function that takes a const dv::EventStore&

Meta data

int width = input.sizeX();
int height = input.sizeY();
cv::Size size = input.size();

Return the width / height of the input data. The maximum x-coordinate of an event at this input is input.sizeX() - 1.
This value is depends on what module / camera is attached to the input at runtime. E.g. In case of a low-resolution
DVS128 it would be 128, in case of a high-resolution DVS346 it would be 346. The same holds for the y-coordinate.

Frames

Frame Data

const auto frame = input.frame()

Individual Frame Meta Data

The following methods for accessing the frame contents are supported:

	const auto &pixels = frame.pixels(); A reference to a vector type for raw pixel access

	cv::Mat *matPtr = frame.getMatPointer(); A pointer to an OpenCV Mat representing this frame

Each frame has additional metadata, that can differ for each frame

	long timestamp = frame.timestamp(); The timestamp of the frame

	long timestamp = frame.timestampStartOfFrame(); The timestamp of the start of frame

	long timestamp = frame.timestampEndOfFrame(); The timestamp of the end of frame

	long timestamp = frame.timestampStartOfExposure(); The timestamp ofthe start of the exposure

	long timestamp = frame.timestampEndOfExposure(); The timestamp ofthe end of the exposure

	dv::FrameFormat format = frame.format(); The format of the frame. Options are GRAY, BGR, BGRA

	int width = frame.sizeX(); The width of this specific frame. The width can be smaller or equal to the input width,
but never larger.

	int height = frame.sizeY(); The height of this specific frame. The height can be smaller or equal to the input
height, but never larger.

Input Meta Data

int width = input.sizeX();
int height = input.sizeY();
cv::Size size = input.size();

Returns the maximum dimensions of the input. Individual frames on the input can be smaller than this, but never bigger.

IMU

Data

input.data()

Retrieved the newest data on the this input. The returned data type is (random access) iterable. A convient way to
iterate through the newest data is to call for (const auto &sample : input.data()) {}

Triggers

Data

input.data()

Retrieved the newest data on the this input. The returned data type is (random access) iterable. A convient way to
iterate through the newest data is to call for (const auto &sample : input.data()) {}

Bounding Box

Data

input.data()

Retrieved the newest data on the this input. The returned data type is (random access) iterable. A convient way to
iterate through the newest data is to call for (const auto &boundingBox : input.data()) {}

Input Meta Data

int width = input.sizeX();
int height = input.sizeY();
cv::Size size = input.size();

Returns the maximum dimensions of the input. A bounding box on this input is always in respect to these dimensions.

Common for all inputs

The following functions are available for all input types, including custom flatbuffer types.

input.isConnected()

For optional inputs, this function returns true iff the input is connected to an output in the current runtime.

input.getOriginDescription()

Returns a string describing the origin of the data. In most cases, this string will give some information about the
original creator of the data, like serial number of the camera. However, this is not guaranteed, as every module the
data passes through is allowed to alter the string it passes down in any way.

input.data()

Advanced use Retrieved the newest data on the this input. The returned data type is equivalent to a shared pointer
type. Dereferencing the return value gives the flatbuffer type <T> of the latest data.

input.infoNode()

Advanced use Returns the underlying config trees info node about the output connected to this input. This info node
provides information about dimensions etc about the input. Convenience functions such as the event inputs sizeX etc.
are based on this information. An input of a custom flatbuffer type can have arbitrary meta information about the
connection, which an be obtained from the info node. For example, to get an integer with key sizeX from the info node,
call input.infoNode().getInt("sizeX")

Outputs

Output definition

Outputs can only be defined in the static initOutputs function. The number, names and types of outputs have to be
constant during runtime.

Outputs are defined in the static void initOutputs(dv::OutputDefinitionList &out) function. The argument is a
modifiabable container that offers functions to add outputs of different types:

out.addEventOutput(const std::string &name)
out.addFrameOutput(const std::string &name)
out.addIMUOutput(const std::string &name)
out.addTriggerOutput(const std::string &name)
out.addBoundingBoxOutput(const std::string &name)

To add an output of a custom flatbuffer type, use the generic function with your custom types four-character type
identifier.

out.addOutput(const std::string &name, const std::string &typeIdentifier)

Output setup

Upon initialization of your module, outputs have to be set up in the constructor. Setting up outputs means assigning
them required meta information such as dimensions and source identifiers. In most cases, one wants to set up an output
in terms of an input. For example, a filter module takes events of a certain dimension and wants to emit events with the
same dimension. This is why setup takes place at initialization time, rather than static.

Event, Frame and Bounding Box outputs

output.setup(int sizeX, int sizeY, const std::string &originDescription)

Sets up the output with width sizeX and height sizeY and the supplied origin description. It is advisable to copy
the origin description from an input, as the purpose of this field is to keep track of the original creator of the data.

output.setup(const RuntimeInput &input)

Sets up the output with the same parameters as a compatible input. Event, Frame and Bounding Box inputs are compatible
with each other. For example, setting up a frame output with the same parameters as an Event input would look like
outputs.getFrameOutput("frames").setup(inputs.getEventInput("events"));

Other outputs

output.setup(const std::string &originDescription)

Sets up the output with the given origin description. It is advisable to copy the origin description from an input, as
the purpose of this field is to keep track of the original creator of the data.

Advanced use This is sufficient for the provided IMU and Trigger types. For a custom flatbuffer type, you may
require additional information to be present in the output info config node. To set up these custom fields, put them in
the output info node obtained by output.infoNode()

Send data to outputs

Data can be sent to outputs at any time in the run function. One can send as many data packets as needed (or none). Any
sending of data has to happen on the thread where the run function runs on.

Sending data is easy. Depending on the datatype, we expose different convenience functions to use.

Events, IMU, Trigger

To send data to an output, simply stream the data to the desired output. In case of events, IMU, and trigger data, the
piped data elements are first appended to an out packet. They only get sent out when piping in dv::commit.

outputs.getEventOutput("events") << event1 << event2 << dv::commit;

Alternatively, one can specifically obtain the the output container, append to it and commit it.

auto outEvents = outputs.getEventOutput("events").events();
outEvents.push_back(event1);
outEvents.push_back(event2);
outEvents.commit();

After committing, the output container gets reassigned and can be used again immediately after.

For IMU and Trigger outputs, one uses the data() function instead of the events() function. (The data() function
is also available for events and functually identical).

auto outIMU = outputs.getIMUOutput("imu").data();
outIMU.push_back(imu1);
outIMU.push_back(imu2);
outIMU.commit();

The output containers for events, IMU and trigger also have stream operator support, as

auto outTrigger = outputs.getTriggerOutput("trigger").data();
outTrigger << trigger1 << trigger2;
outTrigger.commit();

All methods are equivalent in performance.

Frames

OpenCV Frames

To send an OpenCV frame to an output, simply use the stream operator on the output.

outputs.getFrameOutput("frames") << myFrame << dv::commit;

OpenCV frames do not have a notion of timestamps. By default, all frames sent out this way would have a timestamp of
0. To make sure the frames on the output have timestamps, one can stream in the timestamp first.

outputs.getFrameOutput("frames") << timestamp << myFrame << dv::commit;

Alternatively, one can get the frame at the output, and use that to commit the OpenCV matrix manually. This is used,
when one wants to set additional parameters such as exposure times.

auto outFrame = outputs.getFrameOutput("frames").frame();
outFrame.setTimestamp(timestamp);
outFrame.setTimestampStartOfExposure(timeStartOfExposure);
outFrame.setTimestampEndOfExposure(timeEndOfExposure);
outFrame.setMat(openCVFrame);
outFrame.commit()

Non-OpenCV Frames

// Get current output frame
auto outFrame = outputs.getFrameOutput("frames").frame();
// Setting the format and size makes the pixel buffer allocate the right amount of storage
outFrame.setFormat(dv::FrameFormat::BGR);
outFrame.setSize(640, 480);
// Set the timestamp
outFrame.setTimestamp(timestamp);
// .pixels gives a writable, vector compatible buffer with enough storage.
// You can write the image in there with any method
std::copy(myBuffer, outFrame.pixels());
// As soon as all the data is ready, calling commit sends the data out
outFrame.commit();

Non OpenCV frames are bit harder to send out. The idea is to generate an empty array on the output, by setting the
format as well as the size. Then write the image data in the buffer obtained by pixels(). As soon as all the data is
ready, call commit() to send the frame out.

Note Set the size and format before writing any data to the pixel array. After calling commit, one has to set the
size and format again for the next frame, which gives a new array.

Footnotes

Configuration API

Configuration options are settings that are exposed via a network interface from DV runtime. The way configuration
options are implemented, the user can change the options dynamically at runtime, either via the DV gui, or with the
command line utility.

Definition of configuration options

Static vs Runtime definition

Configuration options should be added in the static function static void initConfigOptions(dv::RuntimeConfig &config)
in your module. This static function gets executed upon adding the module to the project, but before it has started.
The function is used to populate the configuration before starting the module.

One can add configuration options at runtime, by accessing the modules config.add function at runtime. This makes
sense, for example, in the constructor.

Selection of config option types

The following configuration option types are available

	Name

	Value type

	Description

	GUI representation

	int

	32bit integer

	Accepts a range

	[image: numeric option]

	long

	64bit integer

	Accepts a range

	[image: numeric option]

	float

	32bit float

	Accepts a range

	[image: numeric option]

	double

	64bit float

	Accepts a range

	[image: numeric option]

	bool

	boolean

	Displays a checkbok

	[image: checkbox option]

	string

	string

	Displays an edit field

	[image: string option]

	button

	boolean

	Displays a button

	[image: button option]

	fileSave

	string

	Shows a file save dialog

	[image: file option]

	fileOpen

	string

	Shows a file open dialog

	[image: file option]

	directory

	string

	Shows a directory chooser dialog

	[image: file option]

	list

	string

	Shows a dropdown menu

	[image: list option]

Adding a numerical option (int, long, float, double)

A numerical option can be added as follows

config.add(<name>, dv::ConfigOption::intOption(<description>, <defaultValue>, <minValue>, <maxValue>))
config.add(<name>, dv::ConfigOption::longOption(<description>, <defaultValue>, <minValue>, <maxValue>))
config.add(<name>, dv::ConfigOption::floatOption(<description>, <defaultValue>, <minValue>, <maxValue>))
config.add(<name>, dv::ConfigOption::doubleOption(<description>, <defaultValue>, <minValue>, <maxValue>))

	name The name of the configuration option. Should be a camel cased variable compliant name

	description A description of the purpose of the config option

	defaultValue The value this config option should get initialized with

	minValue The minimum allowed value for this config option. This is optional. If not set, the range defaults to the
order of magnitude of the defaultValue

	maxValue The maximum allowed value for this config option. This is optional. If not set, the range defaults to the
order of magnitude of the defaultValue

Adding a string option

config.add(<name>, dv::ConfigOption::stringOption(<description>, <defaultValue>))

	name The name of the configuration option. Should be a camel cased variable compliant name

	defaultValue The default string to be used in this option

Adding a file option

A file option without a default value can be added as follows:

config.add(<name>, dv::ConfigOption::fileOpenOption(<description>, <allowedExtensions>))
config.add(<name>, dv::ConfigOption::fileSaveOption(<description>, <allowedExtensions>))

A file option with a default value can be added as follows:

config.add(<name>, dv::ConfigOption::fileOpenOption(<description>, <defaultValue>, <allowedExtensions>))
config.add(<name>, dv::ConfigOption::fileSaveOption(<description>, <defaultValue>, <allowedExtensions>))

A directory option can be added with:

config.add(<name>, dv::ConfigOption::directoryOption(<description>, <defaultValue>))

	name The name of the configuration option. Should be a camel cased variable compliant name

	defaultValue The default file path for the option. This is optional. If not set, the default is an empty string.

	description A description of the purpose of the config option

	allowedExtensions A comma separated list of the allowed extensions. Extensions should just be the ending, without
dot. E.g. jpg,jpeg,png

Adding a button option

config.add(<name>, dv::ConfigOption::buttonOption(<description>, <buttonLabel>))

	name The name of the configuration option. Should be a camel cased variable compliant name

	description A description of the purpose of the config option

	buttonLabel The string that should be displayed on the button

A button option has a boolean value type. By default, the value is false. As soon as a user clicks the button, the
button gets disabled and the value set to true to indicate the request. To re-arm the button, reset the value back to
false.

Adding a list option

config.add(<name>, dv::ConfigOption::listOption(<description>, <defaultChoice>, {<choice1>, <choice2>, ...}, <allowMultipleSelection>))

	name The name of the configuration option. Should be a camel cased variable compliant name

	description A description of the purpose of the config option

	defaultChoice The default choice for this option. This can either be a string or the index of the choice in the list
of choices. In case of a string, the string has to be present in the list of choices as well.

	{<choice1>, <choice2>, ...} A vector of strings, denoting all possible selections for this option

Reading config options

Config values can be read easily with

bool value = config.getBool(<name>)
int value = config.getInt(<name>)
long value = config.getLong(<name>)
float value = config.getFloat(<name>)
double value = config.getDouble(<name>)
std::string value = config.getString(<name>)

The get functions are not compile time type checked. Make sure to use the correct getter function for your data type to
prevent a runtime error. The correct value type for the config options can be obtained from the table above.

Validity of read values

Config option values can be read safely everywhere in the code. Outside changes to the option values are applied in
between calls to the run and configUpdate functions. During the function calls, the value of config options can be
seen as constant. (Unless explicitly changed in your code).

Performance considerations

Looking up a config value requies a string key lookup in a hash map. This is a very efficient operation, however, when
used in a hot loop in the code, it can add overhead.

To mitigate this problem, the module api provides the opportunity to override a void configUpdate() function. This
function, compared to the run function, only runs when a config value actually has changed. You can then copy the value
of the config variable to an instance member. E.g.

void configUpdate() override {
 this->myConfigOption = config.getInt("myConfigOption");
}

During the run function call, one can then just use the instance member integer, rather than querying the value of the
config option over and over again.

Setting config options

Config options can be set everywhere in the code. The option assumes the new value immediately after setting it. To set
a config option, use the correct corresponding function

config.setBool(<name>, <value>)
config.setInt(<name>, <value>)
config.setLong(<name>, <value>)
config.setFloat(<name>, <value>)
config.setDouble(<name>, <value>)
config.setString(<name>, <value>)

Again, it is important to use the correct function for the options value type. Note that by setting config options from
code, you are overwriting changes the user has made to the options.

Re-enabling buttons

Buttons have a boolean value type. As long as their config option value is false, the button appears armed and can be
clicked. Clicking the button sets the value to true, to indicate a click request. After performing the required
action, set the value back to false to re-enable the button.

Example:

void configUpdate() override {
 // check if user has clicked the button
 if(config.getBool("myButton") {

 // do complicated action..

 // re-enable button
 config.setBool("myButton", false);
 }
}

Footnotes

Logging API

DV offers a logging facility. Log messages get written to the DV log file (typically in $HOME/.dv-logger.txt), as well
as published to any attached clients, such as the GUI. Logs get automatically tagged with the module name as well as the
timestamp.

Accessing the log object

Every DV module class extends from dv::ModuleBase. This provides the module with an object called log, that can be
accessed from everywhere in the class, including constructor and destructor.

Log levels

Every log level has a member in the log object. To log to the four different levels available, use

log.debug << "This is a debug message" << dv::logEnd;
log.info << "This is an info message" << dv::logEnd;
log.warning << "This is a warning message" << dv::logEnd;
log.error << "This is an error message" << dv::logEnd;

All logging methods described below, can be applied to all log levels.

Logging syntax

Simple logging

The simplest logging syntax can be achieved with

log.info("This is an info string");

DV logging accepts any type that std::cout accepts.

log.info(12);

Stream logging

Log messages can be streamed into the logging object. Every object that is streamed in appends to the current log
message. To send the message out and start a new message, stream in dv::logEnd.

log.info << "The answer to answer is " << 42 << dv::logEnd;

Messages are not complete until dv::logEnd is streamed in

log.info << 1 << " + " << 1 << " = ";
log.info << (1 + 1) << dv::logEnd;

Formatted logging

DV supports formatting log messages with C++20’s std::format syntax. Use the function format for this purpose

double mean;
double stddev;
int nSamples;

log.info.format("mean: {:.2f}, stddev: {:.2f}, samples: {}.", mean, stddev, nSamples);

Consult the fmt library[#1] documentation for the full format syntax.

Footnotes

[#1]
https://fmt.dev/latest/syntax.html

Create a Custom Datatype

The data transferred between DV modules is implemented as FlatBuffers. This tutorial is to show how to create a new
datatype based on FlatBuffers[#1] which can then be used to transmit
data between different modules.

Prerequisites

First, the DV-runtime needs to be installed on your machine. Additionally, the following
tools need to be available:

	cmake

	clang-format

	make

	bash

How-To

Getting the Schema Compiler

The precompiled binaries for the schema compiler flatc are located in the dv-runtime repository. The precompiled
binaries are located in dv-runtime/flatbuffers. For more information on the schema compiler flatc, check out the
official documentation:
https://google.github.io/flatbuffers/flatbuffers_guide_using_schema_compiler.html

Writing the Schema

The full syntax for the schema file is documented in the following guides:

	https://google.github.io/flatbuffers/flatbuffers_guide_writing_schema.html

	https://google.github.io/flatbuffers/flatbuffers_guide_writing_schema.html

An example for a schema file is shown below:

native_include "dv-sdk/data/cvector.hpp";

file_identifier "PLOT";

struct Vector3D {
	x: int32;
	y: int32;
	z: int32;
}

table PlotPoint {
	/// Timestamp (µs).
	timestamp: int64;
	/// Plot X coordinate.
	coord: Vector3D (native_inline);
}

table PlotPacket {
	elements: [PlotPoint] (native_inline);
}

root_type PlotPacket;

This schema creates a FlatBuffers vector which can be used as an input or output throughout the DV toolchain using the
dv-sdk. The vector is of type PlotPacket and contains elements of type PlotPoint. Each PlotPoint contains a
timestamp and a Vector3D.

Remarks Regarding the Schema

	In order for the schema to be compatible with the DV toolchain it is necessary for it to contain a variable called
timestamp of type int64.

	The attribute native_inline is used whenever the class created by flatc should contain an object of the struct for
which the attribute is dedicated. If the attribute is not present, the field will be implemented as a pointer.

	tables may be extended in future versions of the FlatBuffer that is created, structs may not.

	The file_identifier needs to be a string of four characters

Compiling the Schema

In order to compile the schema for use with the dv-sdk the following command should be used:

<path_to_flatc> --cpp \
 --scoped-enums \
 --gen-object-api \
 --gen-compare \
 --gen-name-strings \
 --cpp-ptr-type "std::unique_ptr" \
 --cpp-str-type "dv::cstring" \
 --cpp-str-flex-ctor \
 --cpp-vec-type "dv::cvector" \
 --reflect-types \
 --reflect-names <schema_file>.fbs

mv `basename <schema_file>`_generated.h <schema_file>_base.hpp
clang-format -i <schema_file>_base.hpp

For simplicity, this has been implemented in a bash script in the dv-runtime repository: flatbuffers/dv-sdk-flatc.sh
(see
https://gitlab.com/inivation/dv/dv-runtime/-/tree/master/flatbuffers)

You can also just clone the dv-runtime repository instead and execute the file directly.

Using the FlatBuffer Object

Now that the <schema_file>_base.hpp object is created, it can be used with the dv-sdk.

The following examples show how the FlatBuffer object can be used in a Module.

Registering your Custom Type with the Module

Add the following static function to your module class.

static void initTypes(std::vector<dv::Types::Type> &types) {
	types.push_back(dv::Types::makeTypeDefinition<PlotPacket, PlotPoint>("A point to be plotted"));
}

Adding the FlatBuffer Object as an Output of a Module

static void initOutputs(dv::OutputDefinitionList &out) {
 out.addOutput("stats", PlotPacket::TableType::identifier);
}

The value of PlotPacket::TableType::identifier is the four character file_identifier (in this case "PLOT").

Adding an Object to the FlatBuffer Output Vector

auto stats = outputs.getVectorOutput<PlotPacket, PlotPoint>("stats").data();

Vector3D vec(1, 2, 3);
PlotPoint point(<timestamp>, vec);

stats.commit();

Adding the FlatBuffer Object as an Input of a Module

static void initInputs(dv::InputDefinitionList &in) {
 in.addEventInput("stats", PlotPacket::TableType::identifier);
}

The value of PlotPacket::TableType::identifier is the four character file_identifier (in this case "PLOT").

Getting an Object from the FlatBuffer Input Vector

void run() {
 auto stats = outputs.getVectorInput<PlotPacket, PlotPoint>("stats").data();

 for(const auto &point: stats) {
 // do whatever
 }
}

Footnotes

[#1]
https://google.github.io/flatbuffers/index.html

Installation

Installation of dv-runtime is only provided on Mac and Linux systems.

 MacOS

The easiest way to install dv-runtime is via Homebrew[#1]. We provide a
Homebrew tap[#2] for macOS. Install it with:

brew tap inivation/inivation
brew install libcaer --with-libserialport --with-opencv
brew install dv-runtime

 Linux

Ubuntu Linux

We provide a PPA repository[#3] for Focal (20.04 LTS) and
Jammy (22.04 LTS) on the x86_64, arm64 and armhf architectures.

sudo add-apt-repository ppa:inivation-ppa/inivation
sudo apt-get update
sudo apt-get install dv-runtime

Ubuntu Bionic

We provide a separate PPA repository[#4] for Bionic
(18.04 LTS) on the x86_64, x86, arm64 and armhf architectures.

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo add-apt-repository ppa:inivation-ppa/inivation-bionic
sudo apt-get update
sudo apt-get install dv-runtime

Fedora Linux

We provide a COPR repository[#5] for Fedora 34, 35, 36 and
rawhide on the x86_64, arm64 and armhf architectures.

sudo dnf copr enable inivation/inivation
sudo dnf install dv